

Refined Compressive Strain Capacity Models

Ming Liu¹, Fan Zhang¹, Kunal Kotian¹, and Steve Nanney²

Center for Reliable Energy Systems¹

Dublin, OH, USA

US DOT PHMSA²

Houston, TX, USA

2014 10th International Pipeline Conference (IPC 2014) Calgary, Alberta, Canada 10/01/2014

Overview

- Background
- Model development processes
- Model Key parameters
- Models
- Model evaluation
- Summary

Background

- Why compressive strain models are needed?
 - Ground movement and temperature change can induce compressive strain in the pipeline.
 - Excessive compressive strain forms wrinkles in the pipe which reduces its load carrying capacity.
 - Compressive strain capacity models are used to calculate the critical compressive strain.

Background

- Existing compressive strain models
 - Many existing models:
 - CSA Z662, DNV OS F101, API RP 1111, University of Alberta, JFE, and C-FER, etc.
 - Many differences:
 - Basis: experiments vs. numerical analyses or combined
 - Loading conditions: bending dominant, axial force typically not known
 - Recognized parameters: D/t, pressure, strength, strain hardening capacity, geometry imperfections, cross section ovality, girth weld high-low misalignment
 - Calculated strain capacity

Model Development Process

- What model development processes are?
 - How to represent/simulate the actual material and field conditions in finite element analyses,
 - They are the foundation of the compressive strain models.
- Why model development processes are important?
 - Actual material and field conditions are often complicated and have a lot of variations,
 - The differences in how the actual conditions were simulated in the existing models partially contributed to the difference of the models,
 - Need consistent and realistic modeling processes to be able to
 - Consider the variations,
 - Represent those complicated conditions, and
 - Keep the modeling efforts manageable.

Model Development Processes

- Key elements of the model development processes
 - Representation of the material properties
 - Representation of loads and constraints in the field
 - Representation of loading sequences
 - Measure of compressive strain capacity
 - Length of specimen

Representation of Material Properties

- Full stress-strain curves vs. key material parameters
 - Full stress-strain curves (SSC) are represented by material parameters, e.g., YS, Y/T, uEL
 - The same set of material parameters may correspond to different SSC
 - The procedures for the PRCI-CRES tensile strain models were used.

Representation of Load and Constraint

The load applied to a pipeline can be complicated

Influencing Parameters

- Pipe's geometries: <u>D/t ratio</u>;
- Loading conditions:
 - Internal pressure and
 - Longitudinal net-section force (tension);
- Pipe properties:
 - Yield strength,
 - Strain hardening exponent (pipe's Y/T ratio),
 - Lüder's strain,
 - Material anisotropy (different axial/hoop SSC);
- Geometry imperfections:
 - Cross section ovality
 - Longitudinal surface undulation;
- Girth welds:
 - Strength mismatch, cap size, and residual stress
 - High-low misalignment.

Effect of D/t and Pressure

- The increase of CSC due to internal pressure is higher for small D/t pipes
- Most models didn't capture the pressure effect very well

Effect of Geometry Imperfections

- What is the geometry imperfections (surface undulation)?
 - Results of cold expansion
- Both imperfection height and length are important to the CSC
 - Critical length: 20%-60% OD
- Most models didn't consider this parameter
- Recommended height based on actual measurement

Median $h_g = \max\{0.13\%D, 8\%t\}$, Lower Bound $h_g = \max\{0.05\%D, 1\%t\}$, Upper Bound $h_g = \max\{0.2\%D, 15\%t\}$.

Refined Models

$$\varepsilon_c^{\text{crit}}(\%) = \min[\varepsilon_u, F_{LD} * \varepsilon_r),$$

$$F_{LD} = \left\{ \frac{\epsilon_r}{1 - 0.50 * (1 - 0.75\varepsilon_r^{-0.23}) \left[1 + \tanh\left(8.0\frac{\varepsilon_e}{\varepsilon_r} - 8.2\right)\right]} \right\} \text{ SSC with L\"{u}der's strain},$$

$$\text{Round SSC}$$

Parameters adopted in the refined models

- Pipe D/t ratio;
- Internal pressure;
- Geometry imperfection;
- Pipe Y/T ratio;
- Pipe uniform strain;
- Pipe Lüder's strain; and
- Net-section stress (only tension currently).

$$\varepsilon_{r}(\%) = F_{DP} * F_{YT} * F_{GI} * F_{NF},$$

$$F_{DP} = \begin{cases} 980 * \left[0.5 \left(\frac{D}{t} \right)^{-1.6} + 1.9 * 10^{-4} \right], & \text{if } f_{p} < f_{pc}, \\ 980 * (1.06f_{p} + 0.5) \left(\frac{D}{t} \right)^{-1.6}, & \text{if } f_{p} \ge f_{pc}. \end{cases}$$

$$f_{pc} = 1.8 * 10^{-4} * \left(\frac{D}{t}\right)^{1.6}$$

$$f_p = \frac{p_i D}{2t\sigma_y},$$

$$F_{YT} = 2.7 - 2.0 \frac{\sigma_y}{\sigma_u},$$

$$F_{GI} = 1.84 - 1.6 \left(\frac{h_g}{t}\right)^{0.2},$$

$$F_{NF} = \begin{cases} 1.2f_n^2 + 1, & \text{if } f_n \ge 0 \\ 1, & \text{if } f_n < 0 \end{cases}$$

Model Evaluation

IPC2014-33680

- Z. Zhang, Z. Yu, M. Liu, K. Kotian, and F. Zhang, "Application of compressive strain capacity models to multiple grades of pipelines".
- Extended testing database: 52 tests
 - D/t: 22 104, X52 X100, Y/T: 0.77 0.91, pressure factor: 0 0.8

Summary

- Refined compressive strain capacity models
 - Modeling processes
 - Influencing parameters
 - Evaluation of the models with experimental data
- Details of the technical work can be found in
 - DOT final report: Liu, M., Wang, Y.-Y., Zhang, F., and Kotian, K., 2013, "Realistic Strain Capacity Models for Pipeline Construction and Maintenance," US DOT PHMSA #DTPH56-10-T-000016.
 - An early publication: Liu, M., Wang, Y.-Y., Zhang, F., Wu, X., and Nanney, S., 2013, "Refined Compressive Strain Capacity Models," 6th International Pipeline Technology Conference, Ostend, Belgium.

Thank you!